68 research outputs found

    Measured descent: A new embedding method for finite metrics

    Full text link
    We devise a new embedding technique, which we call measured descent, based on decomposing a metric space locally, at varying speeds, according to the density of some probability measure. This provides a refined and unified framework for the two primary methods of constructing Frechet embeddings for finite metrics, due to [Bourgain, 1985] and [Rao, 1999]. We prove that any n-point metric space (X,d) embeds in Hilbert space with distortion O(sqrt{alpha_X log n}), where alpha_X is a geometric estimate on the decomposability of X. As an immediate corollary, we obtain an O(sqrt{(log lambda_X) \log n}) distortion embedding, where \lambda_X is the doubling constant of X. Since \lambda_X\le n, this result recovers Bourgain's theorem, but when the metric X is, in a sense, ``low-dimensional,'' improved bounds are achieved. Our embeddings are volume-respecting for subsets of arbitrary size. One consequence is the existence of (k, O(log n)) volume-respecting embeddings for all 1 \leq k \leq n, which is the best possible, and answers positively a question posed by U. Feige. Our techniques are also used to answer positively a question of Y. Rabinovich, showing that any weighted n-point planar graph embeds in l_\infty^{O(log n)} with O(1) distortion. The O(log n) bound on the dimension is optimal, and improves upon the previously known bound of O((log n)^2).Comment: 17 pages. No figures. Appeared in FOCS '04. To appeaer in Geometric & Functional Analysis. This version fixes a subtle error in Section 2.

    On the optimality of gluing over scales

    Full text link
    We show that for every Ī±>0\alpha > 0, there exist nn-point metric spaces (X,d) where every "scale" admits a Euclidean embedding with distortion at most Ī±\alpha, but the whole space requires distortion at least Ī©(Ī±logā”n)\Omega(\sqrt{\alpha \log n}). This shows that the scale-gluing lemma [Lee, SODA 2005] is tight, and disproves a conjecture stated there. This matching upper bound was known to be tight at both endpoints, i.e. when Ī±=Ī˜(1)\alpha = \Theta(1) and Ī±=Ī˜(logā”n)\alpha = \Theta(\log n), but nowhere in between. More specifically, we exhibit nn-point spaces with doubling constant Ī»\lambda requiring Euclidean distortion Ī©(logā”Ī»logā”n)\Omega(\sqrt{\log \lambda \log n}), which also shows that the technique of "measured descent" [Krauthgamer, et. al., Geometric and Functional Analysis] is optimal. We extend this to obtain a similar tight result for LpL_p spaces with p>1p > 1.Comment: minor revision

    Metric structures in L_1: Dimension, snowflakes, and average distortion

    Get PDF
    We study the metric properties of finite subsets of L_1. The analysis of such metrics is central to a number of important algorithmic problems involving the cut structure of weighted graphs, including the Sparsest Cut Problem, one of the most compelling open problems in the field of approximation algorithms. Additionally, many open questions in geometric non-linear functional analysis involve the properties of finite subsets of L_1.Comment: 9 pages, 1 figure. To appear in European Journal of Combinatorics. Preliminary version appeared in LATIN '0

    Vertex Sparsifiers: New Results from Old Techniques

    Get PDF
    Given a capacitated graph G=(V,E)G = (V,E) and a set of terminals KāŠ†VK \subseteq V, how should we produce a graph HH only on the terminals KK so that every (multicommodity) flow between the terminals in GG could be supported in HH with low congestion, and vice versa? (Such a graph HH is called a flow-sparsifier for GG.) What if we want HH to be a "simple" graph? What if we allow HH to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier HH that maintains congestion up to a factor of O(logā”k/logā”logā”k)O(\log k/\log \log k), where k=āˆ£Kāˆ£k = |K|, (b) a convex combination of trees over the terminals KK that maintains congestion up to a factor of O(logā”k)O(\log k), and (c) for a planar graph GG, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in GG. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.Comment: An extended abstract appears in the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2010. Final version to appear in SIAM J. Computin

    Maximum gradient embeddings and monotone clustering

    Full text link
    Let (X,d_X) be an n-point metric space. We show that there exists a distribution D over non-contractive embeddings into trees f:X-->T such that for every x in X, the expectation with respect to D of the maximum over y in X of the ratio d_T(f(x),f(y)) / d_X(x,y) is at most C (log n)^2, where C is a universal constant. Conversely we show that the above quadratic dependence on log n cannot be improved in general. Such embeddings, which we call maximum gradient embeddings, yield a framework for the design of approximation algorithms for a wide range of clustering problems with monotone costs, including fault-tolerant versions of k-median and facility location.Comment: 25 pages, 2 figures. Final version, minor revision of the previous one. To appear in "Combinatorica
    • ā€¦
    corecore